

Dual H-Bridge Motor Driver IC

1. Description

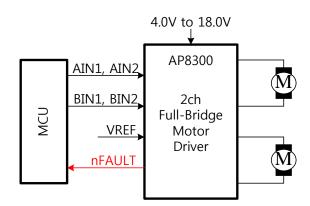
The AP8300 provides a dual H-bridge motor driver which wide range of motor power supply voltage from 4.0V to 18.0V and low power consumption at sleep mode. This sleep mode can be set using a dedicated nSLEEP pin.

The ETSSOP Package is most suitable for home appliance and general brushed and Stepper Motors.

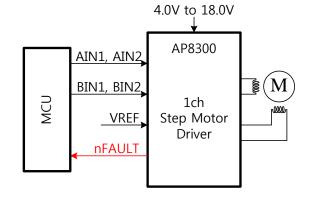
A simple PWM interface allows easy interfacing to controller circuits.

These H-bridge drivers are full bridge drivers for brush motor applications. The AP8300 is capable of driving up to 2.0A of current from each output or 4.0A of current in parallel mode (with proper heat sinking, at 12V and $TA=25^{\circ}C$)

Internal protection functions are provided for UVLO, OCP, Short-circuit protection, and overtemperature. Fault conditions are indicated by a nFAULT pin.


2. Features

- Dual H-Bridge Motor Driver
- Single/Dual Brushed DC
- Stepper
- PWM Control Interface
- Optional Current Regulation With 20.0µs
 Fixed Off-Time
- High Output Current per H-Bridge
- 2.0A Maximum Driver Current at 12 V and $TA = 25^{\circ}C$
- Parallel Mode Available Capable of 4.0A
 Maximum Driver Current at 12 V and
 TA = 25°C
- 4.0V to 18.0V Operating Supply Voltage Range
- Low-Current 3.0µA Sleep Mode
- Protection Features
- VM Undervoltage Lockout (UVLO)
- Overcurrent Protection (OCP)
- Thermal Shutdown (TSD)
- Fault Condition Indication Pin (nFAULT)


3. Applications

- Home Appliances
- Refrigerator, damper
- General Brushed and Stepper Motors
- Laser Printer, Inkjet Printer, Photo Printer
- Photo Printer, Mini Printer

Simplified Schematic1

Simplified Schematic2

4. Pin Configuration and Description

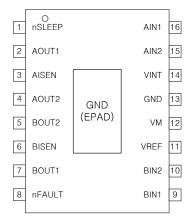


Figure 4-1. Pin Configuration

Figure 4-2. Sample Figures

Pin Description

PKG PAD No.	PKG PIN Assignment	I/O	DESCRIPTION
1	nSLEEP	INPUT	Logic high to enable device; logic low to enter low-power sleep mode; internal pulldown
2	AOUT1	OUTPUT	Winding A output
3	AISEN	OUTPUT	Connect to current sense resistor for bridge A, or GND if current regulation is not required
4	AOUT2	OUTPUT	Winding A output
5	BOUT2	OUTPUT	Winding B output
6	BISEN	OUTPUT	Connect to current sense resistor for bridge A, or GND if current regulation is not required
7	BOUT1	OUTPUT	Winding B output
8	nFAULT	OUTPUT (Open- Drain)	Connect to current sense resistor for bridge A, or GND if current regulation is not required
9	BIN1	INPUT	Controls BOUT1; internal pulldown
10	BIN2	INPUT	Controls BOUT2; internal pulldown
11	VREF	INPUT	Voltage on this pin sets the full scale chopping current; short to VINT if not supplying an external reference voltage
12	VM	Power	Connect to motor power supply; bypass to GND with a $0.1 uF$ and $10 \mu F$ (minimum) ceramic capacitor rated for VM
13	GND	GND	Both the GND pin and device PowerPAD must be connected to ground
14	VINT	-	Internal supply voltage; bypass to GND with 2.2μF, 6.3V capacitor
15	AIN2	INPUT	Controls AOUT2; tri-level input
16	AIN1	INPUT	Controls AOUT1; tri-level input

5. Block Diagram

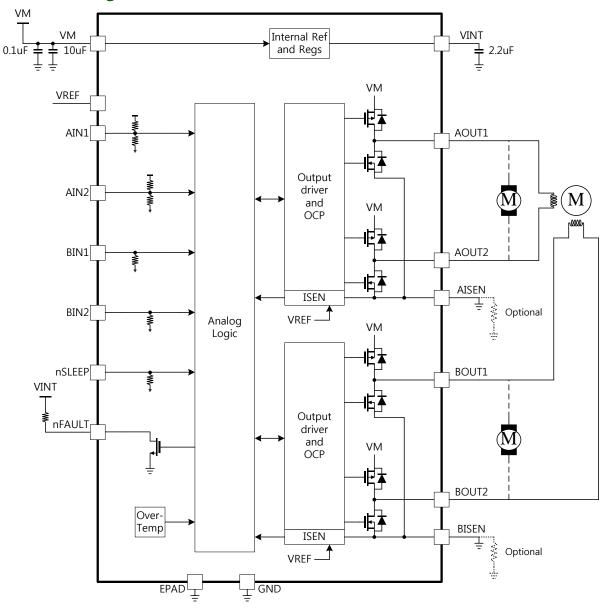


Figure 5-1. Block Diagram

6 Specifications

6.1 Maximum Ratings Characteristics

(TA = 25°C unless otherwise specified)

Character	istics	Symbol	Value	Unit
Power supply voltage		VM	-0.3 ~ 20.0	V
Power supply voltage	ramp rate	VM_ramp	2.0	V/us
Internal regulator volt	age	VINT	3.6	V
Analog input pin volta	age	VREF	3.6	V
Control pin voltage		AIN1,AIN2,BIN1,BIN2,nSLEEP, nFAULT	7.0	V
Continuous phase noc	de pin voltage	AOUT1,AOUT2,BOUT1,BOUT2	VM+0.6	V
Continuous shunt am voltage	nplifier input pin	AISEN, BISEN	0.6	V
Peak drive current		AOUT1, AOUT2, BOUT1, BOUT2, AISEN, BISEN	Internally limited	А
Power dissipation ETSSOP-16L		PD_ETSSOP_16L	3.1	W
Operating Junction te	mperature	Topr	-40~150	°C
Storage temperature		Tstg	-55~150	℃

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Rating

Characteristics Value			
Electrostatic	HBM : Human body model (Ref : JS-001)	±4000	\/
discharge	CDM : Charged Device Model (Ref : JS-002)	±1500	V

6.3 Recommended Operating Conditions

(TA = 25°C unless otherwise specified)

Characteristics	Symbol	Min	Тур	Max	Unit
Power Supply voltage range ⁽¹⁾	V_{VM}	4.0	12.0	18.0	V
Reference rms voltage range ⁽²⁾	V_{REF}	1.0	-	3.3	V
Applied STEP Signal	f _{PWM}	0	ı	250	kHz
VINT external load current	I_{VINT}	0	-	1.0	mA
Motor rms current per H-bridge ⁽³⁾	I_{RMS}	0	-	1.0	Α
Operating ambient temperature	T _A	-40	-	85	°C

 $^{(1) \ \} Note that \ \ Rds (ON) \ \ increases \ and \ \ maximum \ \ output \ current \ is \ reduced \ at \ VM \ supply \ voltages \ below \ 5 \ V.$

⁽²⁾ Transients of ± 1 V for less than 25 ns are acceptable.

⁽²⁾ Operational at VREF between 0 and 1 V, but accuracy is degraded.

⁽³⁾ Power dissipation and thermal limits must be observed.

6.4 Thermal Information

Characteristics ⁽¹⁾	Symbol	Value	Unit
Junction-to-ambient thermal resistance	RθJA	40.2	°C/W
Junction-to-case (top) thermal resistance	RθJC(top)	32.8	°C/W
Junction-to-board thermal resistance	RθJВ	25.5	°C/W
Junction-to-top characterization parameter	ΨͿΤ	0.95	°C/W
Junction-to-board characterization parameter	ΨЈВ	10.8	°C/W
Junction-to-case (bottom) thermal resistance	RθJC(bot)	4.6	°C/W

⁽¹⁾ These parameters, although guaranteed, are not 100% tested in production.

6.5 Electrical Characteristics

(TA = 25°C, VvM = 12V, unless otherwise specified)

Characteristics	Symbol	Condition	Min	Тур.	Max	Unit
POWER SUPPLIES (VM, VINT)						
VM operating voltage	VvM	-	4	12	18	V
VM operating supply current	Ivm	VVM = 12 V, excluding winding current, nSLEEP = 1	0.5	1.8	3.0	mA
VM sleep mode supply current	Ivmq	Vvm = 12 V, nSLEEP = 0	0.5	1.2	3.0	μΑ
Sleep time	tsleep	nSLEEP = 0 to sleep mode	-	-	1.0	ms
Wake time	twake	nSLEEP = 1 to output transition	-	-	1.0	ms
Power-on time	ton	VVM > VUVLO rising to output transition	-	-	1.0	ms
VINT voltage	VINT	VVM > 4 V, IOUT = 0 A to 1 mA	3.13	3.3	3.47	V
LOGIC-LEVEL INPUTS (BIN1, BIN2	, NSLEEP)		•	•		
Input logic low voltage	VIL	-	0	-	0.7	V
Input logic high voltage	VIH	-	1.6	-	5.5	V
Input logic hysteresis	VHYS	-	100	-	-	mV
Input logic low current	IIL	VxINx = 0 V	-1.0	-	1.0	μΑ
Input logic high current	ΙιΗ	VxINx = 5 V	1.0	-	30	μΑ
D. II day on a circle of a	Rpd	BIN1, BIN2	-	200	-	kΩ
Pulldown resistance		nSLEEP	-	500	-	kΩ
T		AIN1 or AIN2	-	400	-	ns
Input deglitch time	tdeg	BIN1 or BIN2	-	200	-	ns
B 11		AIN1 or AIN2 edge to output change	-	800	-	ns
Propagation delay	t PROP	BIN1 or BIN2 edge to output change	-	400	-	ns
TRI-LEVEL INPUTS (AIN1, AIN2)	•		•	•		
Tri-level input logic low voltage	VIL	-	0	-	0.7	V
Tri-level input Hi-Z voltage	Vız	-	-	1.1	-	V
Tri-level input logic high voltage	VIH	-	1.6	-	5.5	V
Tri-level input hysteresis	VHYS	-	100	-	-	mV
Tri-level input logic low current	IIL	$V_{XINX} = 0 V$	-30	-	-1	μΑ
Tri-level input logic high current	ΙιΗ	VxINx = 5 V	1.0	-	30	μΑ
Tri-level pulldown resistance	Rpd	To GND	-	170	-	kΩ
Tri-level pullup resistance	Rpu	To VINT	-	340	-	kΩ

Characteristics	Symbol	Condition	Min	Тур.	Max	Unit	
CONTROL OUTPUTS (NFAULT)							
Output logic low voltage	Vol	Io = 5 mA	-	-	0.5	V	
Output logic high leakage	Іон	Vo = 3.3 V	-1.0	-	1.0	μΑ	
MOTOR DRIVER OUTPUTS (AOUT	1, AOUT2, E	BOUT1, BOUT2)					
llink side CCT on desistance	Dagger	Vvm = 12 V, I = 0.5 A, T _J = 25°C	-	590	-	mΩ	
High-side FET on-resistance	Rds(on)	VVM = 12 V, I = 0.5 A, TJ = 85°C $^{(1)}$	-	750	-	mΩ	
Lavy side CET on wasintance	Dagger	Vvm = 12 V, I = 0.5 A, TJ = 25°C	-	340	-	mΩ	
Low-side FET on-resistance	Rds(on)	Vvm = 12 V, I = 0.5 A, TJ = 85°C (1)	-	450	-	mΩ	
Off-state leakage current	Ioff	Vvм = 5 V, Tл = 25°C	-1.0	-	1.0	μΑ	
Output dead time	tdead	Internal dead time	-	200	-	ns	
PWM CURRENT CONTROL (VREF,	AISEN, BISI	EN)					
Externally applied VREF input current	Iref	Vvref = 1 to 3.3 V	-	-	1.0	μΑ	
xISEN trip voltage	VTRIP	For 100% current step with VVREF = 3.3 V	-	500	-	mV	
Current sense blanking time	t BLANK	-	-	1.8	-	μs	
Current sense amplifier gain	Aisense	Reference only	-	6.6	-	V/V	
Current control constant off time	toff	-	-	20.0	-	μs	
PROTECTION CIRCUITS			•	•	•		
NA 1 1 1 1 1	.,	Vvм falling; UVLO report		-	2.9	V	
VM undervoltage lockout	Vuvlo	Vvм rising; UVLO recovery	-	-	3.0	V	
Overcurrent protection trip level	Іоср	-	2.0	-	-	Α	
Overcurrent deglitch time	tdeg	-	-	2.8	-	μs	
Overcurrent protection period	tocp	-	-	1.6	-	ms	
Thermal shutdown temperature	TTSD (1)	Die temperature TJ	150	160	180	°C	
Thermal shutdown hysteresis	THYS (1)	Die temperature TJ	-	50	-	°C	
Timing Requirements							
Delay time, BIN1 to BOUT1	t1	-	100	-	600	ns	
Delay time, BIN2 to BOUT1	t2	-	100	-	600	ns	
Delay time, BIN1 to BOUT2	t3	-	100	-	600	ns	
Delay time, BIN2 to BOUT2	t4	-	100	-	600	ns	
Output rise time	tF	-	50	-	150	ns	
Output fall time	tr	-	50	_	150	ns	

(1) These parameters, although guaranteed, are not 100% tested in production.

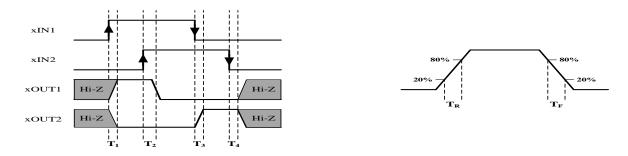


Figure 6-1. Timing Diagram

7. Detailed Description

7.1 Overview

The AP8300 is an integrated motor driver solution for two DC motors or bipolar stepper motors. The device integrates two H-bridges that use an NMOS low-side driver and PMOS high-side driver and current-sense regulation circuitry. The AP8300 can be powered from a supply range of 4.0V to 18.0V and can provide output currents in 1.0A rms.

The simple PWM interface makes it easy to interface with the controller circuitry.

Current regulation uses a fixed off-time (tOFF) PWM scheme. The current-controlled trip point is controlled by the value of the sense resistor and the voltage applied to VREF.

A low-power sleep mode is included that allows the system to save power when the motor is not running.

7.2 Device Functional Modes

The AP8300 is active unless the nSLEEP pin is brought logic low. In sleep mode, the VINT regulator is disabled and the H-bridge FETs are disabled Hi-Z. Note that tSLEEP must elapse after a falling edge on the nSLEEP pin before the device is in sleep mode. The AP8300 is brought out of sleep mode automatically if nSLEEP is brought logic high. Note that tWAKE must elapse before the output change state after wake-up.

When VVM falls below the VM UVLO threshold (VUVLO), the output driver, internal logic, and VINT regulator are reset.

VINT **MODE CONDITION H-BRIDGE** 4V < VVM < 18VOperating Operating Operating nSLEEP pin = 14V < VVM < 18V **SLEEP** Disabled Disabled nSLEEP pin = 0Disabled Fault Any fault condition met Depends on fault

Table 7-1. Functional Modes

7.3 Bridge Control

Table 7-2 shows the logic for the inputs xIN1 and xIN2.

Table 7-2. Bridge Control

	INPUT OUTPUT			Function (DC Motor)	
NSLEEP	xIN1	xIN2	xOUT1	xOUT2	Function (DC Motor)
1	0	0	Hi-Z	Hi-Z	Coast (Fast decay)
1	0	1	L	Н	Reverse
1	1	0	Н	L	Forward
1	1	1	L	L	Brake (slow decay)

NOTE

Pins AIN1 and AIN2 are tri-level, so when they are left Hi-Z, they are not internally pulled to logic low. When AIN1 or AIN2 are set to Hi-Z and not in parallel mode, the output driver maintains the previous state.

7.4 PWM Motor Drivers

This device contains two identical H-bridge motor drivers with current-control PWM circuitry. Figure 7-1 shows a block diagram of the circuitry.

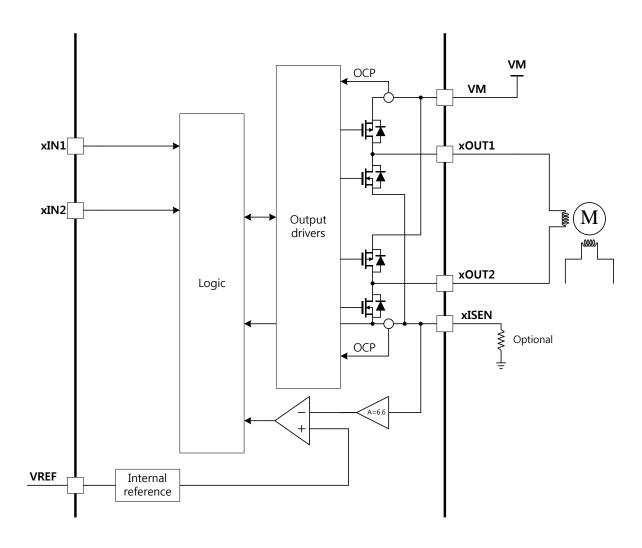


Figure 7-1. PWM Motor Driver Circuitry

7.5 Parallel Operation

Two drivers can be used in parallel to supply twice the current to a single motor. To start parallel mode, Hi-Z must be maintained when AIN1 and AIN2 are powered up or when sleep mode is exited (nSLEEP switches from 0 to 1). BIN1 and BIN2 are used to control the driver. If current control is required, connect AISEN and BISEN to a single sense resistor. To exit the parallel mode, AIN1 and AIN2 must be driven high or low and the device must be powered on or wake-up mode must be exited. Figure 7 shows a block diagram of a device using parallel mode.

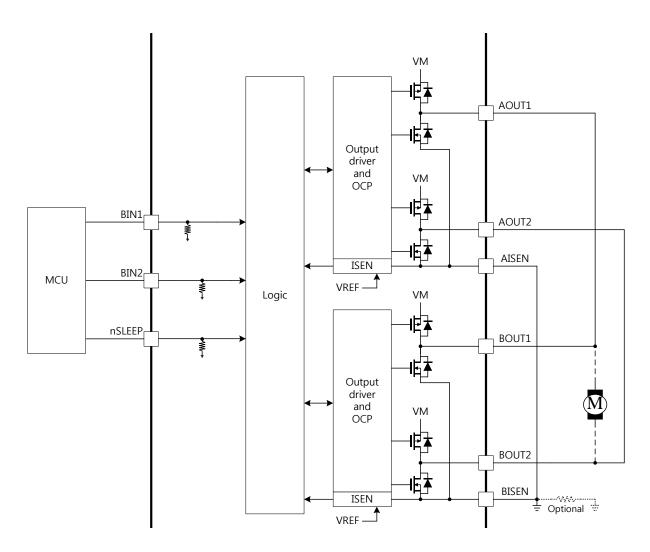


Figure 7-2. Parallel Mode Operation

7.6 Current Regulation

The current through the motor windings is regulated by a fixed-off-time PWM current regulation circuit. With DC brushed motors, current regulation can be used to limit the stall current (which is also the startup current) of the motor.

Current regulation works as follows:

When an H-bridge is enabled, current rises through the winding at a rate dependent on the supply voltage and inductance of the winding. If the current reaches the current chopping threshold, the bridge disables the current for a time tOFF before starting the next PWM cycle. Note that immediately after the current is enabled, the voltage on the xISEN pin is ignored for a period of time (tblank) before enabling the current sense circuitry. This blanking time also sets the minimum on-time of the PWM cycle.

The PWM chopping current is set by a comparator which compares the voltage across a current sense resistor, connected to the xISEN pin, with a reference voltage. The reference voltage is derived from the voltage applied to the VREF pin and it is VVREF / 6.6. The VREF pin can be tied, on board, to the 3.3 V – VINT pin, or it can be externally forced to a desired VREF voltage. The full scale chopping current in a winding is calculated as follows:

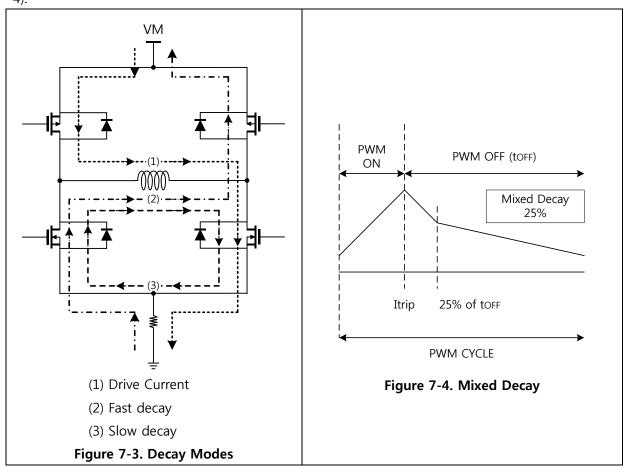
$$I_{TRIP} = \frac{V_{VREF}}{6.6 \times R_{ISENSE}}$$

where

- ITRIP is the regulated current.
- VVREF is the voltage on the VREF pin.
- RISENSE is the resistance of the sense resistor.

Example : If VVREF is 3.3 V and a 500m Ω sense resistor is used, the full-scale chopping current is 3.3 V / (6.6 × 500 m Ω) = 1.0 A.

Note that if the current control is not needed, the xISEN pins may be connected directly to ground. In this case, VREF should be connected to VINT.



7.7 Current Recirculation and Decay Modes

During PWM current chopping, the H-bridge is enabled to drive current through the motor winding until the PWM current chopping threshold is reached (see case 1 in Figure 7-3).

After the chopping current threshold is reached, the drive current is interrupted, but due to the inductive nature of the motor, current must continue to flow for some period of time. This is called recirculation current. To handle this recirculation current, this device H-bridge operates in mixed decay mode.

Mixed decay is a combination of fast and slow decay modes. In fast decay mode, the opposite drivers are turned on to allow the current to decay (see case 2 in Figure 7-3). If the winding current approaches zero, while in fast decay, the bridge is disabled to prevent any reverse current flow. In slow decay mode, winding current is recirculated by enabling both of the low-side FETs in the bridge (see case 3 in Figure 7-3). Mixed decay starts with fast decay, then goes to slow decay. In this device, the mixed decay ratio is 25% fast decay and 75% slow decay (as shown in Figure 7-4).

7.8 Protection Circuits

The AP8300 is fully protected against undervoltage, overcurrent, and over temperature events.

ERROR INTERNAL **FAULT H-BRIDGE RECOVERY REPORT CIRCUITS** VM undervoltage nFAULT Disabled Shut down System and fault clears on recovery (UVLO) unlatched Overcurrent nFAULT System and fault clears on recovery and Disabled Operating (OCP) unlatched motor is driven after time, tOCP Thermal nFAULT Disabled Operating System and fault clears on recovery shutdown (TSD) unlatched

Table 7-3. Functional Modes

OCP (Over Current Protection)

<OCP operation>

An analog current limit circuit on each FET limits the current through the FET by limiting the gate drive. If this analog current limit persists for longer than the OCP deglitch time tDEG, all FETs in the H-bridge are disabled and the nFAULT pin is driven low. The device remains disabled until the retry time tOCP occurs. The OCP is independent for each H-bridge.

Over current conditions are detected independently on both high-side and low-side devices; that is, a short to ground, supply, or across the motor winding all result in an OCP event. Note that OCP does not use the current sense circuitry used for PWM current control, so OCP functions even without presence of the xISEN resistors.

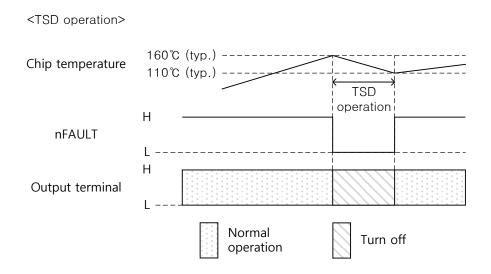
OCP
Level Detected

Output Current

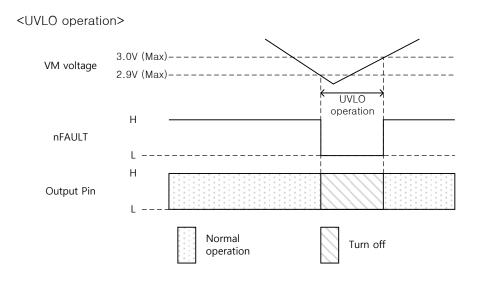
H

Output Pins

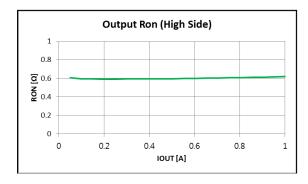
Normal operation

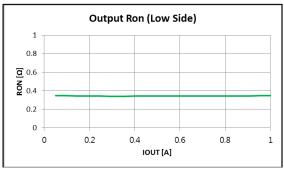

Turn off

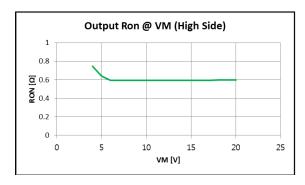
7.8 Protection Circuits (Cont.)

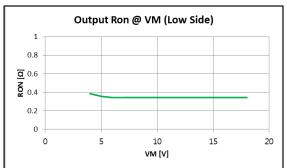

TSD (Thermal Shutdown)

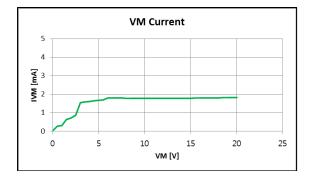
If the die temperature exceeds T_{TSD} , all FETs in the H-bridge are disable and the nFAULT pin is driven low. After the die temperature has fallen to a safe level, operation automatically resumes. The nFAULT pin is released after operation has resumed. It has a hysteresis.

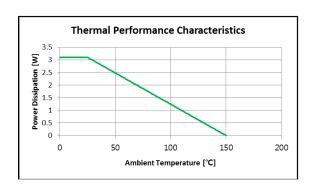

UVLO (Under Voltage Lockout)


If at any time the voltage on the VM pin falls below the UVLO falling threshold voltage, VUVLO, all circuitry in the device is disabled, and all internal logic is reset. Operation resumes when VVM rises above the UVLO rising threshold. The nFAULT pin is driven low during an undervoltage condition and is released after operation has resumed.






8. Typical Performance Characteristics



8.1 Thermal Performance Characteristics

9. Application Circuit

Information in the following application Circuits is not part of the APsemi component specification, and APsemi does not warrant its accuracy or completeness. APsemi's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Dual DC Motor Operation (Example)

If customers would like to drive two DC motors each, it recommends the following circuit.

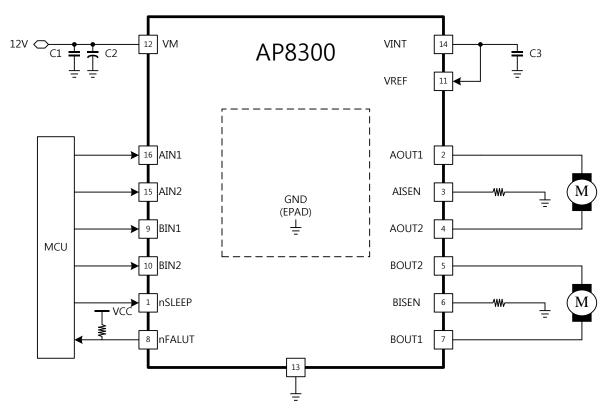


Figure 9-1. Dual DC Motor operation circuit

Example Value

- . C1: 10uF, C2=100nF, C3=2.2uF
- . MCU should have six ports which is five outputs and one input.

9. Application Circuit (Cont.)

Step Motor Operation (Example)

If customers would like to drive step motor, it recommends the following circuit.

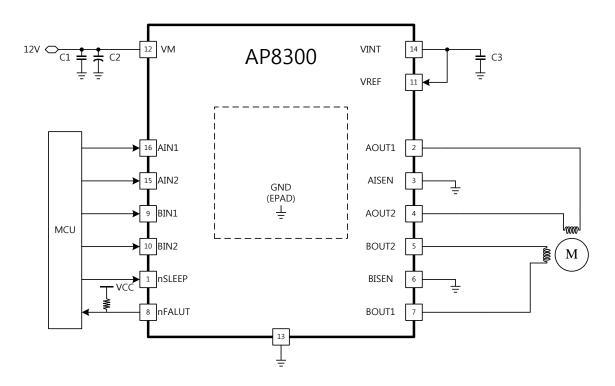


Figure 9-2. Step Motor operation circuit

Example Value

- . C1: 10uF, C2=100nF, C3=2.2uF
- . MCU should have six ports which is five outputs and one input.

9. Application Circuit (Cont.)

Single DC Motor Operation (Example)

If customers would like to drive DC motor with twice the current, it recommends the following circuit.

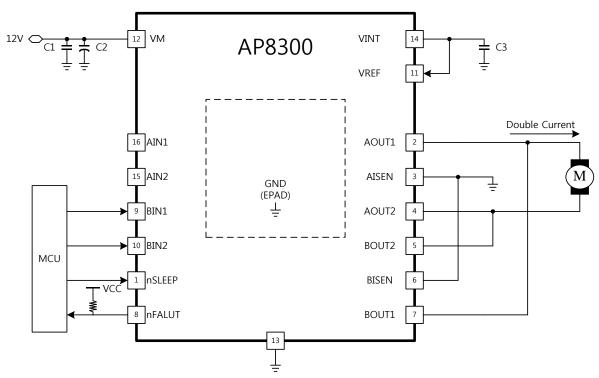


Figure 9-3. Single DC Motor operation circuit

Example Value

- . C1 : 10uF, C2=100nF, C3=2.2uF
- . MCU should have four ports which is three outputs and one input.

10. LAYOUT

10.1 LAYOUT Guidelines

Bypass the VM terminal to GND using a low-ESR ceramic bypass capacitor with a recommended value of 10 μ F rated for VM. Place this capacitor as close to the VM pin as possible with a thick trace or ground plane connection to the device GND pin.

Bypass VINT to ground with a ceramic capacitor rated 6.3 V. Place this bypassing capacitor as close to the pin as possible.

10.2 LAYOUT Example

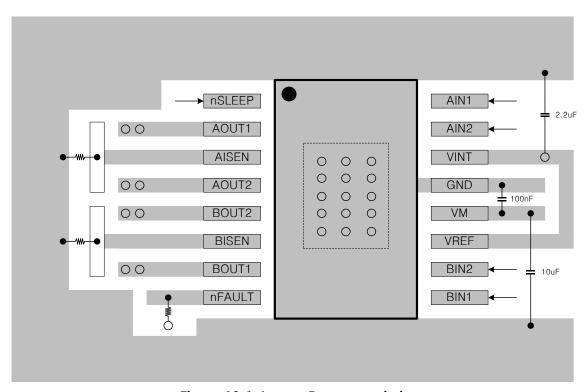


Figure 10-1. Layout Recommendation

11. Ordering Information

11.1 Packing Information

Part No	Package Packing		Finish	Halogen	Packing Unit
AP8300S	ETSSOP-16L	4,000 pcs/REEL	Sn	Free	32,000 pcs (8 REEL)

11.2 Marking Information

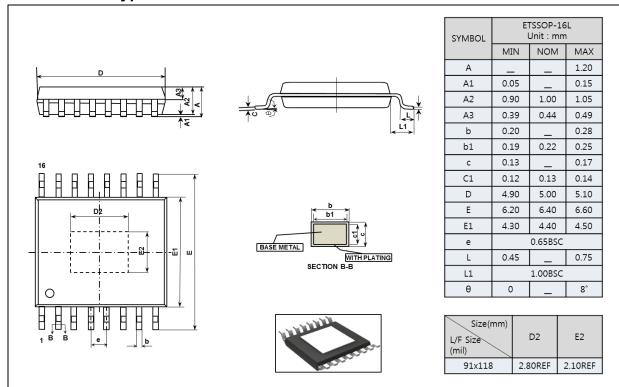
AP8300S

1st Line: Device name

- AP8300S: ETSSOP-16L PKG code

2nd Line: Date code

- YY : Last two digits of calendar year


- WW: Work week calendar

- Z: ASSEMBLY SITE

12. Package Information

ETSSOP-16L Type (AP8300S)

Appendix 1. Revision History

No	Date	Contents
Rev00	2021-10-07	Initial Datasheet Release
Rev01	2021-11-03	6.4 Electrical Characteristics fixed typos
		. IREF: 1uA(Typ) -> 1uA(Max)
Rev02	2021-11-23	6.4 Electrical Characteristics duplicate specification
		. IREF : 1uA(Typ) Delete
Rev03	2021-12-15	6.4 Thermal Information added
Rev04	2022-04-14	11.1. Packing Information Modified
		. Packing: 3,000 pcs/REEL => 4,000 pcs/REEL
		. Packing Unit : 48,000 pcs → 32,000 pcs (8 REEL)

http://www.apsemi.com

IMPORTANT NOTICE

AP Semiconductor co, Ltd reserves the right to make changes without further notice to any products or specifications herein. AP Semiconductor co, Ltd does not assume any responsibility for use of any its products for any particular purpose, nor does AP Semiconductor co, Ltd assume any liability arising out of the application or use of any its products or circuits. AP Semiconductor co, Ltd does not convey any license under its patent rights or other rights nor the rights of others.

AP Semiconductor Co., Ltd

Contact. Tel 82.70.4693.2299 FAX 82.70.4000.4009

E-mail: sales@apsemi.com

© 2013 AP semiconductor Co., Ltd. -Printed in KOREA -All Rights Reserved.